

Activity 2.1: Identifying Outliers, Testing Normality,

Identification of Outliers

1. Enter the data below manually into your data editor.

Weight	
	166
	170
	140
	185
	164
	87
	171
	194
	166
	162
	151
	288
	53
	198
	202
	171
	186
	182
	169
	175
	188
	149
	167
	176

- 2. Save your data as an SPSS file called **Weight.sav**.
- 3. Use SPSS techniques of Module 2, Lesson 1 to identify and remove any outliers in the data.

Checking a Single Variable for Normality

1. Enter the data below manually into your data editor.

Age
36
57
39
62
55
51
45
28
41
44
47
53
59
41
75
43
77
68
66
62
72
or CDC

- 2. Save your data as an SPSS file called **Age_Var.sav**
- 3. Test the above data for normality using graphical methods with a histogram and a Q-Q Plot.
- 4. Test the above data for normality using descriptive statistics, skewness, and kurtosis.
- 5. Test the above data for normality by the Shapiro-Wilkes statistical test.